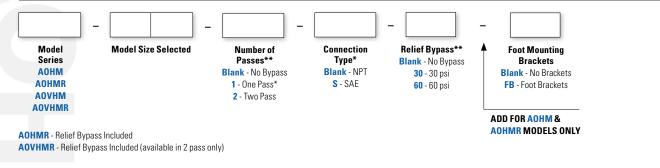
Fluid Cooling Mobile AOHM & AOVHM Series

Features

- AO/AOVH Series with Hydraulic Motor
- Adjustable Louvers
- High Heat Removal
- Heavy Duty Construction
- Wide Flow Range
- Heat Removal up to 210,000 BTU/Hr.
- Long Life Hydraulic Motor
- NPT Connections

OPTIONS

Built-in Relief Bypass Valve SAE or BSPP Connections Corrosion Resistant Coating

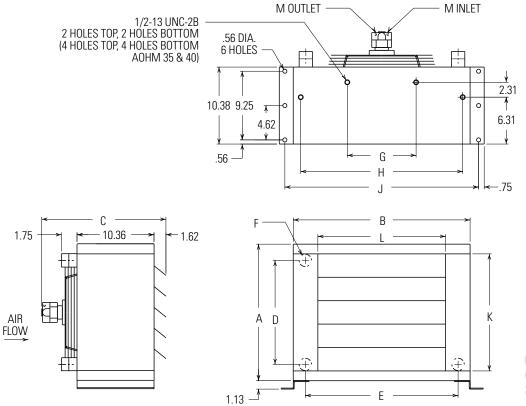

Ratings

Operating Pressure 300 psi **Test Pressure** 300 psi **Operating Temperature** 400° F

Materials

Tubes Copper Fins Aluminum Turbulators Steel Manifolds Steel Connections Steel Cabinet Steel with Baked Enamel Finish Fan Blade Aluminum with Steel Hub Fan Guard Zinc Plated Steel Fan Adapter Steel

How to Order



*Other connection types available. Please consult factory for assistance.

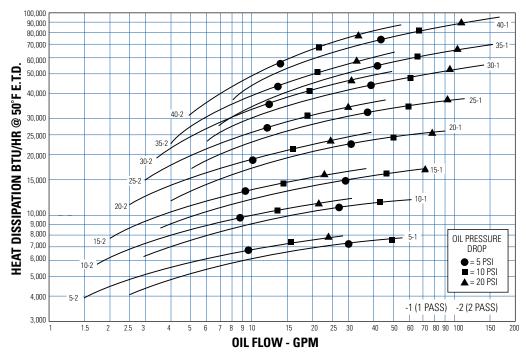
**ADD FOR AOHMR & AOVHMR MODELS ONLY

Dimensions

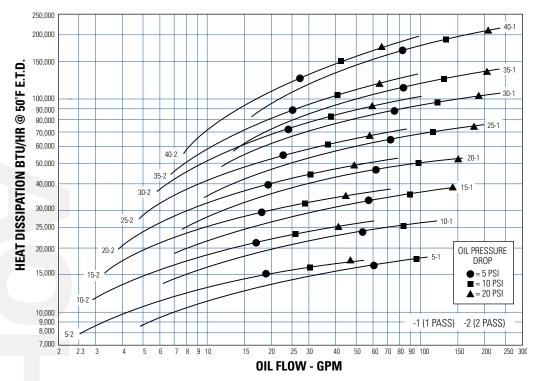
Fan Rotating Clockwise/Facing Motor Shaft

Foot Brackets: Optional for AOHM Standard with AOVHM

See dimensional chart for external NPT or optional internal SAE connection size.


						F							М	NET WT
MODEL	A	В	C	D	E	NPT	SAE	G	Н	J	K	L	(SAE)	(LBS)
AOHM-5	11.81	14.81		7.69	11.69	1″	#16		12.94	16.81	9.19	8.31		35
AOVHM-5	11.01	11.01	16.70	7.03	11.03	1 1/2"	#24		12.01	10.01	0.10	0.01		59
AOHM-10	13.12	19.00	10.70	8.88	15.88	1″	#16		17.12	21.00	10.50	12.50		50
AOVHM-10	13.12	15.00		0.00	10.00	1 1/2"	#24		17.12	21.00	10.00	12.00		76
AOHM-15	15.75	20.38		11.50	17.25	1″	#16		18.50	22.38	13.12	13.88		60
AOVHM-15						1 1/2"	#24							89
AOHM-20	18.38	23.81	17.09	14.00	20.56	1 1/4"	#20		21 01	21.81 25.81	15.75	17.19	#8	75
AOVHM-20						2″	#32		21.01					108
AOHM-25	23.62	26.68		19.25	23.56	1 1/4"	#20		24.81	28.68	21.00	20.19		110
AOVHM-25	Z3.0Z	20.08	17.25	19.20	23.50	2″	#32	1	24.81	28.08	21.00 20.1	20.1		143
AOHM-30	27.56	31.62	16.70	23.19	28.50	1 1/4"	#20	11.00	29.75	33.62 24.9	24.04	25.12		120
AOVHM-30			16.95			2″	#32		29.70		24.94			178
AOHM-35	- 30.19	33.81	16.70	25.81 30.69	20.60	1 1/4"	#20	- 11.00	31.94	35.81	27.56	27.31		135
AOVHM-35			17.22		30.09	2″	#32			30.01			#10	220
AOHM-40	36.75	41.62	16.70 17.22	32.38	38.50	1 1/4"	#20	13.25	39.75	43.62	34.12	35.12 -	#8	160
AOVHM-40						2″	#32						#10	286

NOTE: We reserve the right to make reasonable design changes without notice. All dimensions are in inches.


AIR COOLED AOHM/AOVHM

Performance Curves

AOHM Series

AOVHM Series

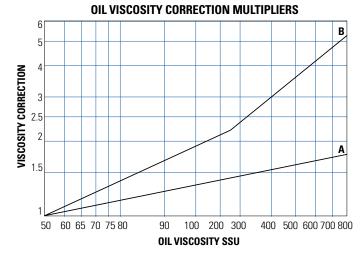
AIR COOLED AOHM/AOVHM

Selection Procedure

Performance Curves are based on 50 SSU oil entering the cooler 50° F higher than the ambient air temperature used for cooling. This is referred to as a 50°F E.T.D.

Determine the Heat Load. Heat load may be expressed as either horsepower or BTU/Hr. To convert horsepower to BTU/Hr.: BTU/HR = Horsepower x 2545

- Step 2 Determine Entering Temperature Difference. The entering oil temperature is generally the maximum desired oil temperature. Entering oil temperature Ambient air temperature = E.T.D.
- Step 3Determine the Corrected Heat Dissipation to use the curves.Corrected Heat Dissipation =BTU/HR heat load x $\frac{50^{\circ}F}{E.T.D.}$ x viscosity correction A.
- **Step 4 Enter curves** at oil flow through cooler and curve heat dissipation. Any curve above the intersecting point will work.


NOTE: *Performance curves shown are for 1 and 2 pass configuration.*

EXAMPLE: 35 - 2 is AOHM or AOVHM - 35

Determine Oil Pressure Drop from Curves:

• = 5 PSI; = 10 PSI; \blacktriangle = 20 PSI. Multiply pressure drop from curve by correction factor B found in oil viscosity correction curve.

Hydraulic Motor

MODEL	MAXIMUM FAN SPEED (RPM)		OIL FLOW REQUIRED (GPM)		MIN. OPERATING PRESSURE (PSI)		SOUND dB(A)*		MOTOR (in ³ /rev.) DISPLACEMENT		CFM	
SIZE	AOHM	AOVHM	AOHM	AOVHM	AOHM	AOVHM	AOHM	AOVHM	AOHM	AOVHM	AOHM	AOVHM
5							68	85			465	780
10	1725	3450	1.6	3.3	300	300	68	85		.22	669	1110
15	1725						69	91		.22	956	1590
20							70	91	.22		1460	2168
25					100	500	72	81	.22	.45	2160	3000
30	1140	1725	1.1	3.4	400	100 500	75	84		.45	2990	4095
35				5.2	900	1000	76	89			4370	5921
40							78	91			5450	9609

Notes: Maximum pressure is 2000 psi. Stated minimum operating pressure is at inlet port of motor. 1000 psi allowable back pressure.

*Catalog db(A) sound levels are at seven (7) feet. dB(A) sound levels increase by six (6) dB(A) for halving this distance and decrease by (6) dB(A) for doubling this distance.

Desired Reservoir Temperature

the oil temperature entering the cooler.

Oil $\triangle T = (BTU's/Hr.) / (GPM Oil Flow x 210).$

Oil Temperature

Automatic Transmission Fluid

Hydraulic Motor Oil

Hydrostatic Drive Oil

Engine Lube Oil

Typical operating temperature ranges are:

Oil Entering Temp. = Oil Leaving Temp + Oil \triangle T.

temperatures.

Oil Temperature: Oil coolers can be selected using entering or leaving oil

Off-Line Recirculation Cooling Loop: Desired reservoir temperature is

Return Line Cooling: Desired reservoir temperature is the oil temperature

leaving the cooler. In this case, the oil temperature change must be

Calculate the oil temperature change (oil $\triangle T$) with this formula:

determined so that the actual oil entering temperature can be found.

To calculate the oil entering temperature to the cooler, use this formula:

Oil Pressure Drop: Most systems can tolerate a pressure drop through the

heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided.

Care should be taken to limit pressure drop to 5 PSI or less for case drain

applications where high back pressure may damage the pump shaft seals.

120°F - 180°F

160°F - 180°F

180°F - 200°F

200°F - 300°F

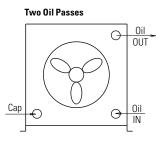
Built-In Relief Bypass

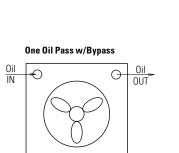
AOHMR Series

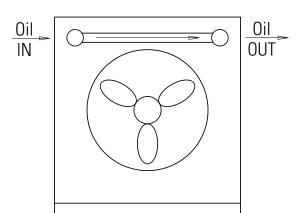
One Pass (Medium to High Oil Flows)	
Model Number	Flow Range GPM (USA)
AOHMR - 5-1	2 - 80
AOHMR - 10-1	3 - 80
AOHMR - 15-1	4 - 80
AOHMR - 20-1	5 - 80
AOHMR - 25-1	6 - 100
AOHMR - 30-1	7 - 100
AOHMR - 35-1	8 - 112
AOHMR - 40-1	9 - 118

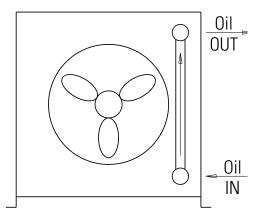
Two Pass (Low to Medium Oil Flows)

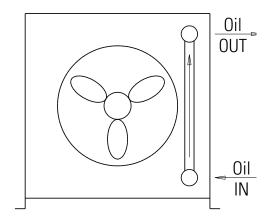
Model Number	Flow Range GPM (USA)
AOHMR - 5-2	2 - 25
AOHMR - 10-2	2 - 30
AOHMR - 15-2	2 - 40
AOHMR - 20-2	2 - 30
AOHMR - 25-2	2 - 40
AOHMR - 30-2	2 - 40
AOHMR - 35-2	3 - 40
A0HMR - 40-2	4 - 40


AOVHMR Series


Two Pass (Low to Medium Oil Flows)	
Model Number	Flow Range GPM (USA)
AOVHMR - 5-2	4 - 50
AOVHMR - 10-2	4 - 60
A0VHMR - 15-2	4 - 60
AOVHMR - 20-2	4 - 80
AOVHMR - 25-2	4 - 80
AOVHMR - 30-2	4 - 80
A0VHMR - 35-2	6 - 80
A0VHMR - 40-2	8 - 80


Bypass valve is available for 2 pass AOVHMR models only.


Installation Piping Diagrams


One Oil Pass

AIR COOLED AOHM/AOVHM